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of the Pythagorean Theorem to a  
surveying project, while our youngest  
students develop critical algebraic 
thinking by creating their own color 
pattern sequences and solving for land-
mark numbers within those sequences.
	 We try to remind ourselves to be  
realistic: we can’t be differentiating 
every moment, and there is value for 
students in the practice of patience 
and in teaching peers—always with 
the knowledge that they’ll soon get 
new work that’s “just right” for them. 
Junior teacher Peter ffitch likes to think 
about the arc of a week’s work as he 
portions out his differentiation efforts; 
Primary teacher Lori Pressman considers  
her K-1 class’s two years in terms  
of periods of stretching followed by 
consolidation. 
	 Ideally, we can help our students 
practice reaching for agency in their 
own learning, asking, “How can I make 
this interesting to me?” “What else does  
this problem make me wonder that I 
might have the skills to investigate?” 
“Can I write a similar but more  
complicated problem of my own?” 
Don’t wait for the next challenge to be 
spooned out. Invent it for yourself.  

Differentiation in mathematics has 
been an area of focus at Arbor School 
this year. As a small school with a 
luxuriously low student-teacher ratio, 
we pride ourselves on a curriculum that 
strives to meet children’s individual 
needs as learners. In our mixed-age 
classes, it’s a necessity; disparate skill 
levels come with the territory. Our 
teachers devote countless hours to 
tailoring their lessons, making sure 
there’s a hook for students less inclined 
toward the subject, an extension for 
those who will zoom through the  
material, an inviting way in for those 
who need scaffolding.
	 One model for differentiation  
that feels successful is to develop units  
that offer many points of entry,  
allowing a whole class to work on the 
same problems at different levels of 
sophistication. We have chosen some 
of our best to present here. We believe 
they satisfy what we’ve come to think 
of as two keys to good differentiation: 
entry points that offer visual and/or 
concrete components and extensions 
that feel natural and pleasurable, never 
like punishment for quick mastery. 
Much of Arbor’s thematic curriculum  
is organized to provide plentiful  
extensions that offer students the chance 
to show their understanding through 
authentic application and creative 
control. Here you will find fourth- and 
fifth-graders applying their knowledge 
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p at t e r n s  i n  t h e  h a r b o r
d e e p  p r a c t i c e  f o r  p r i m a r i e s

by Lori Pressman

Patterning, counting, graphing, measuring, adding, subtracting, problem-solving—
there are so many different facets of mathematics; leading our K-1 Primaries into this 
vast system of thinking is an exciting and challenging task. It’s fun introducing a new 
class to our math super hero, Zero, and to new concepts such as odd numbers or AB 
pattern notation. And it’s thrilling to see a child’s eyes widen when he realizes ten is 
written “10” because there is 1 set of ten and 0 units. 
	 Often the biggest challenge in teaching math is providing students with tasks that 
sufficiently meet their needs, regardless of age or inclination. Each student comes to 
our K-1 classroom with unique exposure to, interest in, and ideas about mathematics, 
and designing activities that allow everyone to feel successful is paramount. Over time, 
the Primary team’s problem design has evolved toward differentiation that permits  
all students to work on the same problem, applying a variety of skills and levels of 
understanding. Everyone has a point of entry and is able to communicate his thoughts 
using increasingly sophisticated strategies.

Framing Deep Practice
Cognitive research shows that even though children have an enormous capacity for 
transferring knowledge into long-term memory, their working memories are easily 
overwhelmed. As novice learners, they can be easily confused by new surface information;  
recognition that a problem shares a structure with others they have solved can be 
elusive and requires long practice. In support of that practice, we have constructed a few 
basic problem frames that recur within a thematic shell connected to our studies of the 
moment. One such frame involves the children spending a given amount of money to 
purchase items of varying cost. For instance, during our Journeys curriculum, we draw 
inspiration from My Father’s Dragon and visit the Adventure Store to stock up on 
rope, boots, and tangerines. The students are asked to find multiple item combinations 
to total the given sum, and many extend the activity on their own to find all of the  
addend possibilities. 
	 Another familiar problem-solving frame focuses on patterns. We often spend  
time exploring repeating patterns in the fall; our newest mathematicians can practice 
identifying and building patterns while more experienced peers apply what they know 
about patterns to make predictions. A favorite activity gives them the pattern and asks 
them to solve for particular numbers. During our study of plants, the children learned 
of a farmer who planted a garden row in the following manner: carrot, radish, carrot, 
radish. Students worked to discover the identity of the 10th, 25th, and 100th vegetables. 
Familiarity with this problem frame helps students approach the problem with greater 
confidence and ease: because they have already discovered an entry point for such a 
problem, they don’t waste any time wondering where and how to begin. Instead they 
can focus on solving the problem and expressing their thinking. They might even find 
they are ready to try a new strategy suggested by a classmate.

Strategy and Development
Strategy and communication are central to the teaching and learning of mathematics.  
When we first introduce a problem to the children, we often model a variety of different  
strategies for solving and recording our findings. Then we set them to work and observe.

See Daniel T. Willingham, 
Why Don’t Students Like 
School?

Manipulatives are prepared 
ahead of time and placed 
on tables so that the  
children have easy access  
to concrete models.  
When preparing for the 
Adventure Store problem, 
we used Unifix cubes to 
represent the different 
items for sale: 2 brown 
cubes = $2.00 rope, 4 black  
cubes = $4.00 black boots,  
and single orange cubes =  
$1.00 tangerines. These 
models are particularly 
helpful for emergent 
mathematicians, who can 
confirm their answers by 
counting each Unifix cube. 
Students who need more 
challenge can be assigned 
larger sums of money or 
can add their own items  
to the store.
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 �What are the first steps taken? Who reaches for the manipulatives and who grabs 
the markers? Which children are content with a pencil and paper? We’re also looking 
to see who benefits from a reminder about clear communication and who might 
need some assistance writing numbers. 

Strategy and communication are the focus of our assessment of a child’s understanding  
of the problem; instead of rewarding one approach over another, we marvel at the 
number of different ways to solve the problem and praise clear representation of ideas.
	 Our young mathematicians seem to follow  
a common course of development in the  
communication of their findings—concrete,  
pictorial, abstract. Beginning problem-solvers  
often collect the manipulatives they need and 
then transfer the images of these cubes directly 
onto their answer sheet. As their understanding  
develops, however, students start drawing  
pictures of the items they are representing; now 
a single image equals x. Some children prefer 
to show their understanding by writing out the 
answers, e.g. $4.00 black boots + $2.00 rope = 
$6.00. All of these modes of communication are 
appropriate and students can all feel successful 
regardless of how they have chosen to express 
their understanding of a problem. 

Differentiation
Keeping the developmental course in mind— 
concrete, pictorial, abstract—we are able to  
differentiate to meet the needs of the individuals  
in our class. We can help make a problem more  
accessible to child who is unsure of how to begin 
by reaching for the manipulatives or drawing an 
empty frame of Unifix cubes totaling the sum that 
we are aiming for. Then the child simply has to 
find the right number of cube sets and color in 
the frame. To nudge a child into a deeper level of thinking, we often ask him to record 
his thinking in a new manner. We might ask the child who has drawn pictures showing 
her answers to include numbers next to the images or to write a corresponding equation. 
Substituting larger numbers or introducing the child to a new problem-solving tool are 
other ways to provide challenge to our hungriest math students. For instance, we might 
provide a hundreds’ chart to help solve the carrot/radish problem. Or we might change 
the pattern to carrot, radish, corn, bean, carrot, radish, corn, bean. 

Conclude with Sharing
Sharing results and strategies with one another is a vital component. Not only does 
such discussion validate everyone’s effort, it also introduces students to new ways of 
communicating their thinking. We often find students trying new strategies for the next 
problem-solve, thus developing a more diverse set of tools and a deeper understanding 
of number and pattern. 

 

Vivek lines up Unifix cubes to 

represent the AABB pattern he 

has designed. Below, Lori helps 

Nadia count the pink and gray 

boat shapes she has drawn.

Greg Neps, who teaches 
math to our middle-grade 
students, has observed 
that some students never 
leave the comfort of visual  
representations when  
they are learning a new 
concept, and he feels 
that’s perfectly acceptable.  
Any problem that has  
application (and all K-8 
math fits this category) has 
a concrete representation, 
and this provides a point 
of entry for many.
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The following are examples of problems that 
we give Primaries over the course of our two 
years with them. The patterning problems are 
a series that the children encounter during 
our study of Journeys; the sets of addend 
problems are examples from our year of 
Seasons & Cycles theme.

Patterning Problems
The boats in Mathland Marina are lined up 
in a pattern—red, yellow, red, yellow. 
�What is the color of the 10th boat? 
What is the color of the 25th boat? 
What is the color of the 82nd boat? 
Explain how you solved this problem.

In Pattern Port boats are lined up in a 
pattern—red, yellow, blue, red, yellow, blue.
What is the color of the 10th boat?
�What is the color of the 25th boat? 
What is the color of the 82nd boat? 
Explain how you solved this problem.

You discover a new harbor where the boats are  
lined up in a pattern. What is the pattern?
What is the color of boat number ___?
What is the color of boat number ___?
What is the color of boat number ___?
Explain how you solved this problem.

Sets of Addends and a Given Sum
There is about 1 quart of blood in babies,  
3 quarts of blood in children, and 5 quarts of 
blood in adults. Who could be present if there 
were 15 quarts of blood in a room?

Adjustments:
The total number of quarts in the room could be 
adjusted higher or lower to accommodate the  
different needs of the students. Also, you could ask  
the children to figure out how many quarts of blood 
are in their family or in the class.

Our class is hatching chicks and butterflies. 
On Monday morning we discovered 18 legs. 
What could have hatched?

Adjustments:
The total number of legs could be adjusted either  
higher or lower to accommodate the different 
needs of the students. You could also introduce children to a table showing them  
a systematic means for finding the all the possibilities.

Adjustments:
For children who are 
overwhelmed by these big 
numbers, choose smaller 
numbers. We might suggest 
they find the number of 
their age or the ages  
of family members. Often 
children will draw colored 
dots or lines representing 
the boats, but they will 
lose count. We step in  
and help them record 
landmark numbers.
For students who are ready 
for another challenge, we 
provide laminated hundreds’  
charts and colored wet-
erase pens and have them 
look for emerging patterns.  
We also give them more 
complicated patterns  
and ask them to solve for 
the given numbers.

Grace has marked all the “black number boats” on 

a hundreds’ chart and is recording those numbers 

in a column.

Wenwen said, “I never tried using the hundreds’ 

chart before, but I think I see how to color my 

boats right on here.” She proceeded to color 

the numbers in her chosen pattern—red, yellow, 

purple, purple—and then counted along the chart 

to find the numbers she’d chosen.
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Dinosaurs last roamed what is now North America some 65 million years ago. The last 
ice age retreated from these parts just 10,000 years ago, and we know that Native 
Americans made their homes along the banks of the river that is just a stone’s throw 
from our campus during that same period and remained until just 150 years ago.  
How can a child who is excited to be turning eight on his next birthday grasp the  
immensity of these measurements of time? And how can we as teachers support his  
understanding of the relative value of these large numbers? Those are the questions 
that we sought to address as we began this year in the Juniors (two blended second- 
and third-grade classes).
	 Under the thematic umbrella of “Communities,” we spend this year of our two-
year cycle learning about the people of North America, what holds them together as 
groups, what motivates them to move, and how the place in which they live influences 
their culture. To set the scene, we open the year looking at a prehistoric map of the 
continental pieces that will become North America. We learn about the dinosaurs that 
lived where we now live, about the amazing prehistoric mammals that followed them, 
and then about the first humans to find their way to these shores. We follow these First 
Peoples as they gradually populate the entire continent, and we pay particular attention  
to influences of geography, climate, and available resources. As Europeans enter the 
picture, we keep the focus on the reasons for community and on the “pushes” and “pulls” 
that moved these groups across the country.

Beyond the Time Line
	 In past years, time lines have proved useful in helping children to grasp the linear 
nature of the human story in North America, offering a spatial model for the relative  
value of large numbers. However, it has been clear to us that the time line model has 
not given the children a true sense of the immensity of this span of history. The Junior 
team spent time this summer looking for a way to get a real sense of what 65 million 
years means relative to the life span of a human being, or even of the human species. 
Fortunately for us, Mark Girod, Associate Professor of Teacher Education at Western 
Oregon University and friend of Arbor School, had been thinking about this, too.  
In his article “Sublime Science,” published in the February 2007 issue of Science  
and Children, Girod presented a lesson that he had designed to help a group of fourth-
graders better understand geologic time. With some modifications in consideration  
of the needs of our younger students, we adopted his lesson and began the creation of 
the Tapestry of One Million Dots.
	 We began by giving each child an 8½ x 11 sheet of paper with 10,000 dots printed 
on it in a 100 x 100 array. With papers in hand, the children moved to the first step 
without even being asked: how many dots were on each page? Guesses and estimates 
flowed, and we recorded these numbers on the white board as the children offered 
them. We did ask that the children make their initial guess at the number without doing 
any counting, and we found an opportunity for assessment in this process. Some of  
our younger mathematicians saw what they knew to be a very large number of dots 
and so guessed what they knew to be a very large number, such as 750, or even 2,000!  
Others with more large-number practice and a more developed sense of number saw 
the potential for using multiplication, given a rectangular array. The simple act of writing 
six- and seven-digit numbers provided an opportunity for place-value work as well.

The dots are small; we 
played with font size and 
margins to maximize their 
size. Our concerns that the 
dots might be too small 
and too close together 
for the children to count 
were proven unwarranted; 
the students’ younger eyes 
served them well.

a  ta p e s t r y  o f  o n e  m i ll  i o n  d o t s
j u n i o r s  c o n s t r u c t  l a r g e  n u m b e r s

by Peter ffitch
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Landmarks to Ten Thousand
	 With their guesses recorded, we asked the children to gather some information  
that would help them turn guesses into estimates. Working along the first row of dots, 
children began by circling the number of dots that equaled their age, and then the 
number of dots that equaled their teacher’s age (I’d conveniently just turned 50), which 
provided them with a useful landmark number. To confirm that the top row really 
had 100 dots, some students counted in groups of five, some circled tens, and some 
felt comfortable eyeballing that the first 50 had gotten them halfway across and that 
doubling was appropriate. Before continuing, we offered the opportunity for children 
to make more informed estimates: most refined their guesses considerably.
	 Now that they were armed with the knowledge that each row contained 100 dots, 
we asked students to circle 1,000 dots. Those who were ready jumped to the calculation 
“100 x 100 = 10,000,” but even some of those students lacked absolute confidence in 
the number of zeros they were using. Those who simply counted by 100’s inadvertently 
helped us think about that problem. Reaching “900,” our counter named the next 
number “ten hundred.” Calling 1,000 “ten hundred” makes clear to young mathema-
ticians what the value of the number really is, and counting by 1,000’s to 10,000 in the 
same manner made it clear to all of our students that we needed four zeros. 
	 We wrapped up this first day of our big number exploration by taking a moment  
to use our 10,000 dot papers to help us think about our own ages relative to the  
number of years since the last ice age and to other spans of time that the children 
found interesting, such as the life of the world’s oldest living person.

Building Larger Multiples
	We began the second part of this lesson  
with two goals in mind. First, we wanted 
children to experience building larger 
numbers in multiples of 10, having 
worked from 100 through 1,000 and 
then to 10,000 on the previous day. We 
also wanted them to see the immensity 
of 1,000,000 in relation to 10,000. To 
accomplish this we had the children work 
together to construct a quilt of their 
individual 10,000 dot pages. We gave 
each pair of children additional sheets so 
that they had a total of ten. They worked 
together to tape these papers into a long 
strip. Counting and calculating as they 
added each page, students were able to 
experience for themselves that ten groups 
of 10,000 is equal to 100,000. All twenty 
children then came together and, strip by 
strip, created a quilt of 1 million dots. 
Before we teachers acknowledged this 

fact, we gave time for one more round of estimation. How many dots could there be 
in this nearly 10-foot square quilt? We counted by 10,000’s and by 100,000’s and even 
made a T-chart so that students could make a prediction: “If one row = 100,000 and 
two rows = 200,000…”
	 With confirmation that we had created a quilt of one million dots, the discussion 
began again, without any prompting from the teachers, as the children marveled at the 
size of one million. “Look how small 10,000 years is compared to 1,000,000!” “If this 
is 1,000,000, imagine how big 65 million would be!” “If we put together 65 million, 

Peter and Adlai assemble their 

strip of 100,000 dots
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Junior Down students admire 

their completed Tapestry of  

One Million Dots

would it fit on the soccer field?” Children took delight in finding where on the quilt 
they had circled their own eight or nine years, a number so significant to them but so 
insignificant relative to the whole. While we acknowledge that it is a challenge for any 
of us to truly understand the immensity of the numbers that describe the history of  
the Earth, this lesson brought these children closer to that understanding and, more 
importantly, filled them with wonder at the scope of it all.
	 The quilt remains on display in our classroom, a ready reference as big numbers 
find their way into our daily work. This reference can be made more accessible if  
increments are marked at 10, 100, 1,000, and so on. With some labeling, the quilt 
could also serve as a sort of time line, too. If the last dot is marked as the present year, 
students could count back and mark significant events that occurred within the last 
one million years. 
	 In subsequent lessons, our mathematicians benefited from stepping back from  
these large numbers and working with number lines from 0-10 and 0-100. Having  
had this experience with a visual representation of the relative size of these numbers,  
a return to the number line emphasized the relative value of the numbers and the  
spatial relationships that define them.

Download the dot array sheet here: http://www.arborschool.org/pdfs/dotarray.pdf
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A2 + B2 = C2: The Pythagorean Theorem startles with its simplicity. Three sides of a right 
triangle related in a single equation. Even though fourth- and fifth-graders (Intermediates 
at Arbor) possess the skills necessary to apply the theorem with relative ease, a deeper 
understanding of the concept contributes to a firmer foundation for geometric work to 
come. In the fourth and fifth grade the ability to view mathematical concepts completely 
abstractly, without relying on any concrete representation, begins to appear in many 
students. Students start seeing the concepts themselves: they can add without counting 
on their fingers, they can do a word problem about fractions without drawing pictures, 
they think about problems without requiring base-10 blocks. This is not to say that 
students need to or should avoid concrete representations, but the ability to do math 
entirely in the abstract is a boon in algebra and advanced math subjects. The study of 
the Pythagorean Theorem bridges levels of mathematical skill: it can be comfortable 
for students who need a concrete experience, but also allows challenge and satisfaction 
for those who can connect with the ideas at an abstract level.

Forecast
This project, a demonstration of the Pythagorean Theorem, aims to solidify students’ 
understanding in some areas as they gain experience in others. Our students had  
developed strategies for finding the area of a quadrilateral; these proved very useful. 

 �In order to ensure that students understand the concept of area, have them write 
their own area word problems and exchange with a classmate. 

We reviewed some basic concepts about triangles, specifically defining right triangle:  
as one of my students concisely put it, “A triangle with a right angle in it.” Our goal 
was for students to be able to derive and then apply the Pythagorean Theorem to find 
the unknown side of a right triangle, working first on solving for C (as the theorem 
states) and then eventually solving for A or B. The final demonstration of their  
understanding would be in applying the theorem in “real life” using some surveying 
data students collected on campus. 

Triangles and Squares
To begin the project, we asked students to talk about some of the things they know 
about triangles and then told them that we were going to experiment with a puzzle 
to discover some new facts. We asked the students to draw a right triangle on graph 
paper. The triangle should have legs that create a simple Pythagorean triple. In order 
to make the math more interesting later in the problem, the triple should have some 
larger number parts, e.g. (8, 15, 17) or (5, 12, 13). Our class used a triangle with legs 
12 and 9 graph paper squares long. The students then drew squares based on each of 
the legs: one 9 by 9 square and one 12 by 12. Students then cut out the three shapes 
and set them aside.
	 The primary challenge in this project occurs here. We asked students to imagine a 
square built upon the hypotenuse (longest side) of the triangle. Then we presented two 
puzzles. The first is fairly straightforward: What is the length of the long side of the 
triangle? Students could begin by laying out the 9 x 9 and 12 x 12 squares along the 

Different students get to 
different places along this 
process. For some, the 
realization that there exists 
a relationship between  
the squares built off of  
a right triangle presents a 
sufficient and intriguing  
challenge. For others,  
the application to the real 
world problem is exciting 
as well as challenging.

Pythagorean triples are 
sets of three integers that 
conform to the Pythagorean 
Theorem: A2 + B2 = C2. 
One example of such a set 
is 3, 4, and 5.

t r a c k i n g  p y t h a g o r a s
i n t e r m e d i a t e s  e x p l o r e  a n d  a p p ly  a2 + B 2 = c 2

by Daniel Shaw
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hypotenuse and seeing 6 units extending beyond. Some students also cut out a make-
shift graph paper ruler to lay along the edge. 
	 The second puzzle requires a bit more thought: Can you cut up the two squares 
you have to build the square on the long side? Do you need any extra graph paper? 
Will you have any left over? The conflict in the second puzzle focused the students’  
attention and they set right to the task. 

 �Check in with students here. Some will need help “seeing” the square that builds 
off of the hypotenuse. Finding the length of the long side will help. Ask students 
how they plan on obtaining that length. Most students should quickly figure out 
that the length of the long side happens to measure 15 squares.

	 After solving the first puzzle, students had myriad ways to attack the second. Some 
cut up the 9 by 9 and 12 by 12 squares into smaller chunks and attempted to put them 
back together into a 15 by 15 square. Others started by drawing and cutting out a new 
15 by 15 square to work with as a base. We encouraged the use of different methods 
and the sharing of individual strategies as soon as a few students had finished. 

 �Make sure that students prove that the 15 by 15 square is actually composed of 
the two smaller squares. Expect to see some inefficient strategies, such as cutting 
out every individual square of the graph paper, and be ready to prompt the students 
who get stuck by suggesting they calculate the area of each of the squares.

Whatever the strategy, all our Intermediates eventually found that they had  
exactly enough graph paper squares to build a 15 by 15 square. 

Writing Toward the Theorem
The next step brings writing into the math class and helps students clarify their 
own reasoning. Writing out their thinking assists students in working toward 
their own demonstration of the Pythagorean Theorem. We asked students to  
begin by describing exactly how they found out that the 15 by 15 square could 
be made with the smaller two squares. Fourth-grader Lily worked calculations 
and wrote, “I found the area by x 12 and 12, and then 9 and 9. Then I added the  
answers of those. 12 x 12 = 144 + 9 x 9 = 81, 81 + 144 = 225.” In calculating 
the large square’s area, she added, “This time I multiplied 15 x 15. I got the same  
answer as last time, so I’m guessing that it’s right. 15 x 15 = 225.” Her class-
mate Joe chose a more concrete approach to reach the same conclusion.  
He wrote, “I took the 9 square and cut it into lots of 3 squares. I put those up 
against the 12 square and that made it a 15 square, and that was the length of the triangle. 
I used all of the 9 square and all of the 12 square. That means that 15 x 15 = 12 x 12 + 
9 x 9.” Meanwhile, Lewis made the leap to the theorem itself and wrote that, in a right 
triangle, A2 + B2 = C2. 

 �We stressed that this should be an exercise in effective writing as well as math. 
We expect full sentences, clear handwriting, and logically ordered paragraphs at 
this grade level. However, Beatrice’s meticulous instructions for solving the problem 
eschew paragraph form, substituting a lift-the-flap model and a scale diagram to 
show the most effective subdivision and redistribution of the 9 x 9 square to form 
the 15 x 15 square. Her thought process and supporting explanations were clear. 
This assessment offers an intriguing view of each student’s thinking and command 
of mathematical strategies.

Many students will only 
get to this point in the 
course of three or four 
lessons. This is a great 
point for them to stop if 
they are not yet ready 
for the abstraction of the 
theorem. Ensure that they 
understand that the area 
of the 15 by 15 square 
equals the sum of the 
areas of the smaller two 
squares. Their writing will 
make their understanding 
plain.
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	 After students have written about how they discovered the fact that the area of  
the square on the hypotenuse equals the sum of the areas of the smaller two squares, 
they are ready to try to write the Pythagorean Theorem itself. We asked our students  
to make some guesses, suggesting some right triangles with Pythagorean triples as legs 
to experiment with. Is the area of the square on the hypotenuse always equal to the 
sum of the areas of the squares on the legs? How can you write that fact in words? 
Many students can write the theorem in words, something like this: “In a right triangle 
the area of the two small squares adds up to the area of the big one.” Some have the 
ability to express this sentence symbolically and arrive independently at A2 + B2 = C2. 
Armed with the theorem itself, students can start reasoning about the how the theorem  
can be used. What if we didn’t know one side of a right triangle? We presented our  
students with simple triangles, where all three legs are integers and the hypotenuse is  
the missing side. 

 �Advanced mathematicians will be able to tackle problems with non-integer values  
by estimating square roots. We gave these sorts of problems to any who were 
willing to attempt them. 

Application
Our final application (for this unit, 
at least) of the Pythagorean Theorem 
occurred outside as part of the survey 
work the Intermediates are completing 
in order to design and, ultimately, build 
a cross country trail around Arbor’s 
campus. Students used a simple scope-
and-pole technique to measure the 
elevation change on hilly segments  
of the trail. Small teams calculated the 
elevation change with the scope  
(representing side B of a right triangle) 
and the slope of the trail with a tape 
measure (side C of a right triangle). 
Back in the classroom, they prepared 
to create an elevation map of the trail 
section we had measured. In order to 
do so, they needed to find the missing 
side of the right triangle (side A), the 
distance between the scope and the 
elevation pole. Working with numbers 
that they pulled from the real world 
capped the work with the Pythagorean 
Theorem nicely, and the Intermediates 
created beautiful displays with their 
elevation maps, poetry, botanical  
illustrations, and descriptions of the 
plant species found near each segment 
of the trail they had surveyed. Students 
came out of the Pythagorean work  
feeling that they had discovered a  
formula that is not only new to them, 
but useful as well. 

Working in groups at  
this stage was helpful to 
students as they figured 
out how to apply the 
theorem. Below, Lily and 
Olivia compare strategies.

A homemade surveyor’s scope

Students can easily help 
craft these basic surveying  
tools. Have students cut 
a 10’ section of PVC pipe 
and mark every half foot 
with colored electrical 
tape. This pole will let the 
student looking through 
the scope measure her 
own change in elevation.  
To make a scope, students 
can attach a straw to a 
note card. A metal nut tied 
to a string acts as a plumb 
line to ensure the scope 
is level and the reading 
accurate. (A pocket or 
keychain level would work, 
too.) After the construction 
of our tools, every student 
could participate in this 
work, independent of his 
level of understanding of 
the Pythagorean Theorem.
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This experiment could be 
easily adapted for any 
classroom fifth-grade 
through eighth-grade,  
depending on the concepts 
your group is studying.

Materials  
for each student:
Marbles or glass beads,  
   �uniform in size,  

approximately 80-100 
Tall, narrow, transparent  
   �container—a tennis-ball 

tube works well
Metric ruler
Water
Notebook and pencil

This lesson, typically done by Arbor students during the summer break between their 
sixth- and seventh-grade years, is an experimental introduction to two-variable equations. 
Our rising Sevens have had much practice working with, solving, and graphing single-
variable equations in the math classroom and have had a year of science lab work to 
support graphing two-variable experiments. This assignment explicitly brings the two 
together. While some students toil over this experiment for days with exacting care, 
others quite quickly make the connections between the experiment and the underlying  
algebra of their formula. In the classroom, the experimental portion might take some 
students a single class period while others could easily spend a week in exploration.  
	 In approaching this work without the guidance of a teacher, students end up  
applying a wide array of skills and concepts. Some, with sibling or parental support, 
may have explored the Cartesian plane, slope ratios, or slope-intercept form, while 
others will have simply done the experiment and graphed their data points. 
	 The seventh-grade curriculum at Arbor explores the interplay between variables 
and how one can express math relationships both graphically and algebraically—seeing 
the geometry behind the algebra. This experiment provides students with a common 
project, language, and experience from which they can draw as they extend their  
understanding through in-class discussions and activities. 

Experiment and Data Representation
Working individually or in pairs, the students will set up and conduct the following 
experiment. Samples of student answers are included.

According to Aesop: 
	 A crow perishing with thirst saw a pitcher and, hoping to find water, flew to it with 
delight. When he reached it, he discovered to his grief that it contained so little water 
that he could not possibly get at it. He tried everything he could think of to reach the 
water, but all his efforts were in vain. At last he collected as many stones as he could 
carry and dropped them one by one with his beak into the pitcher, until he brought  
the water within his reach and thus saved his life.
	
Today you get to be the crow—clever, resourceful, patient, and hardworking. You also  
get to have some fun exploring just how long it may have taken Aesop’s crow to fill 
that pitcher. In fact, by the end of this experiment you will be able to predict how many  
stones the crow would need regardless of the height of the container. 

Procedure
1. �Fill the container about halfway with water, ensuring that, when you hold the ruler 

to it, the water height is a whole number in centimeters.
2. Record the height in the first line of your data table (see next page).
3. Carefully add marbles, one at a time, until the water level has risen 1 cm.
4. Record this number of marbles on your data table.
5. �Accurately measure the new height of the water in the cylinder and record this  

in your data table.
6. �Continue adding marbles, pausing each time you have raised the water level an  

additional 1 cm to record the number of marbles used and the new water height. 

t h e  c r o w  a n d  t h e  p i t c h e r
s e n i o r s  e x p e r i m e n t  wi  t h  t w o  va r i a b l e s

by Greg Neps
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Number of 
marbles (x)

0

Height of  
water in cm (y)

The two variables in your experiment are x (the number of marbles) and y (the height 
of the water). Which variable do you think is the dependent variable? Why?
	 “I think that the water level is the dependent variable because it depends on the 
marbles to fluctuate.”   –Theo

Which one is the independent variable? Justify your answer.
	 “I think that x is the independent variable because it causes the y variable to 
change and doesn’t get changed by y.”   –Dylan

When two variables are combined visually in a graph, the horizontal edge of the graph 
is called the “x-axis.” What information should be displayed along the x-axis?
	 “Number of marbles, because the water level/height should actually be height-ish, 
like... going up.”   –Theo

What do you think the vertical edge of your graph is called? How will you label it?
	 “The y-axis, and you would put the height of the water on the y-axis.”   –Connor

Before you turn your data into a graph, predict the shape you think it will take. Why 
would you predict that shape?
	 “It will slope upwards, because the water level is getting steadily higher with every 
marble added.”   –Theo
	 “An upwards diagonal line, because when x grows, y grows.”   –Connor

Now that you have collected all that information, it’s time to represent your data so 
that we can easily compare our findings. The best way to do that is to present the 
data in two uniform ways: graphically and algebraically. Graphically should be pretty 
simple, since you have all the data points and labels already figured out. Plot the points, 
letting 1 cm equal 1 unit on the vertical axis. You can decide how many marbles should 
equal 1 unit on the x-axis. 

If you connect your data points, what type of graph is it? “It’s a line graph.”   –Olivia

Where does the line that you made cross the y-axis? Or, in simpler terms, what was the 
height of the water before adding marbles?	 Answers will vary.

As a common or simplified fraction, what is the ratio of height increase to the number 
of marbles placed into the container? Or in simpler terms, what is the rate of change in 
terms of cm/marbles?
	 Answers will vary. “Mine varied from 1/9 to 1/13 because the size of my marbles 
was different.”   –Connor

Interpolation, Extrapolation, and the Limitations
In small groups, the students will explore each other’s graphs and puzzle out the  
introductory algebra of linear formulae. The groups should consider these questions:

• �By examining the graph, how can you tell the water height at the beginning of some-
one else’s experiment?

Theo’s graph prediction sketch

Many students did not 
have sufficient marbles of 
identical size to perform the 
experiment. Connor and  
Olivia both graphed the  
actual data produced by 
their motley collections, then  
plotted a line of best fit to 
represent their predictions  
for an experiment using 
equal-size marbles.
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• �By examining the data table, how can you tell the water height at the beginning of 
someone else’s experiment?

• �How do the data table’s starting point and the graph’s starting point relate?

• �How many marbles would it take to raise their water level 1 cm?  

• �How many marbles would it take to raise their water level 2.5 cm? How did you 
calculate this?

• �Examine the graphs at your table and discuss with 
your group why some of your lines slope upward more 
rapidly than other people’s graphs. Talk to each other 
about experimental design, equipment, and procedures 
to see if you can agree on an explanation.

 �Rachel’s graph shows a steep slope because she let 
each new value of x represent one unit on the x-axis. 
Other Sevens chose to plot 2 marbles or 5 marbles as 
1 unit. Make sure students notice and adjust for these 
differences during their group work.

• �Name two things that can affect the rate at which the 
water level rises (other than the number of marbles). 
How do those two things (variables) impact your  
experiments and your graphs?

• �If your “pitcher” were 3 meters tall, how many marbles 
would you need to get the water to the top? Describe 
how you made this estimate.

• What if the pitcher were 30 meters tall?

Your answers for the last two questions give us estimates 
as to how many marbles we would need, but your  
experiment gives us data we can turn into a formula to  
determine exactly how many marbles would be needed.

From your data and the questions you have answered, 
create an equation that would allow you to predict  
information not found on your graph. (Hints: What do you have to do to x to get y? 
What value does y have when x is zero?)

y = ____________________________

Often equations of lines are in this form:

y = (the rate of change)x + the initial starting point

Check your estimates using the formula for your experiment. How different are  
your answers?

Use your formula to determine the number of marbles needed to get the water to  
the top of a pitcher 8,848 m high (the height of Mount Everest).
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“The Crow and the Pitcher” 
is, effectively, Chapter 0  
of our seventh-grade  
textbook. Some of our 
working groups were able 
to race through these  
extrapolation questions 
and move on to Chapter 
1 material, while others 
needed more time and 
support. For younger or 
less experienced students, 
we select just a few of  
the interpolation and  
extrapolation questions 
and build in more time for  
whole-group strategizing 
about possible approaches.

If each marble weighs 12 grams, how many metric tons of marbles would you need? 
(1,000 kg/metric ton)

Clearly the last couple of questions have some flaws (as does the formula you created); 
what happens as you continue to place marbles into a container with a limited amount 
of water?  

Does the water level always continue to rise as you add marbles? Describe the flaw in 
this experiment and describe why the graph will cease being linear.

Sketch a graph of how this experiment might look if we continued to add marbles.

Extensions
Create, describe, and graph an imaginary situation in which one variable depends on 
another and explain why the graph is shaped the way it is. Example: Greg’s hairline 
seems to have changed as he has gotten older… x = Greg’s age, y = the distance from 
his hairline to his eyebrows.

	 “Big E everyday eats twice the amount of candy she ate yesterday. For this graph, 
x = days and y = pieces of candy.”   –Olivia

	 “If Mo gets paid $5 every week to mow Mr. MacPherguson’s lawn, how much 
money would he have after 2 months?”   –Ben

	 Dylan graphed her puppy’s growth in inches per month; Rachel graphed the annual 
increase in her paper clip collection. 

 �Checking in with students about their understanding of dependent and independent  
variables is important; you will probably see some dependent variables plotted on  
the y-axis.

How might you create an experiment that has no slope (a horizontal line)? What could 
be variables in this experiment? 

Further Application
We use the Crow and the Pitcher work as a springboard and a regular reference for  
in-class work with the Sevens. They have taken ownership of their equations and can 
therefore more clearly see how they might apply the algebra of two-variable equations, 
with which they will become intimately familiar in the course of their seventh-grade 
year. Not once during the opening months of the school year have we heard, “When  
am I ever going to use this stuff?” However they come into their new classroom,  
it is possible to meet students where they are and meaningfully engage them in the 
classroom activities on many levels.
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The Arbor class of 2011 
helped to shape this text 
as they worked from the 
draft during the 2008-09 
school year. The Answer 
Book is largely their own 
work. The same students 
are now applying  
themselves to the second 
installment in the trilogy, 
while our Eights are  
formulating some of the 
problem sets as they  
review and build upon last 
year’s knowledge.

a r b o r  a lg  e b r a  t e x t b o o k  n o w  ava i l a b l e

Jousting Armadillos & Other Equations:  
An Introduction to Algebra is a new textbook by 
Arbor teacher Linus Rollman. This text, the first 
in a trilogy of Arbor Algebra books, presents  
our sixth-grade math curriculum. Its aim is to 
invite and engage students in beginning algebra, 
allowing them to find success and pleasure in this 
new realm of mathematics. 
 
From the Introduction:

	 [Jousting Armadillos] is structured for the sort 
of independent, small-group work that happens 
in Arbor math classrooms. The book probably 
cannot actually be experienced by a sixth-grade 
student entirely without teacher mediation and 
assistance. But that level of independence was  
the goal I was aiming for, knowing that I would 
fail—the line that I was trying to approach  

asymptotically, if you like. It’s not a book that is meant to be supplemented by many 
lectures or by a teacher working through example problems on an overhead projector. 
It’s written for kids, which means that the tone is a little different from many textbooks 
(though not, I fervently hope, patronizing) and it’s written to be discussed and debated—
by students and their classmates, by students and their families, by students and their 
teachers—rather than taught.
...
	 [Another] thing that sets this book apart is its emphasis on writing. It contains many 
“problems” that ask the kids to write. Sometimes they’re asked to brainstorm lists, 
sometimes to record their understandings, sometimes to create puzzles for one another, 
sometimes to free-associate. There is a wealth of literature on tying writing into areas 
of teaching that don’t traditionally involve a great deal of writing. I suppose it’s clear 
that I believe there’s real value to that idea. (That may not be surprising; my own  
academic background is in the humanities rather than in math.) I’ll say up front that  
if you’re not willing to give some credence to that basic notion, this is probably not  
the textbook for you to use in your classroom. I’ll also say that, while Arbor’s math  
program has its weaknesses, as all do, one area in which we’ve undeniably done well 
is in holding the interest of students who, in another setting, might have considered 
themselves “non-math” people. I think the integration of writing into the program is one 
powerful reason for that. 
...
	 I began by saying that we used to work from several textbooks and that they weren’t, 
even in combination, quite perfect for our purposes. No textbook can be perfect for 
everyone’s purposes and this one certainly won’t be. (I’m especially curious about how 
this book might fare in a classroom with a significantly higher student/teacher ratio.) 
So, please, make modifications. Use the sections that you find interesting or useful  
and discard the others. Add things. Change things. And please, give us your suggestions, 
whether you’re a teacher, a parent, or a student. The theory has always been that this 
will be a “live” text—one with many authors that is constantly being re-shaped....  
I would love to hear from you.   –Linus

If you are interested in receiving a copy of Jousting Armadillos for review, please  
contact Sarah Pope at icci@arborschool.org, or by telephone at 503.638.6399.
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Cambium: (n) the cellular growth tissue  
of trees and other woody plants, from  
medieval Latin “change; exchange.”

What content would you like to see  
offered in Cambium? Do you have ideas  
to improve it? Please send us an email: 
cambium@arborschool.org.

Masthead by Jake Grant, after an 1890 botanical 

illustration. Plant block print by Annika Lovestrand.

The Arbor School of Arts & Sciences is a 
non-profit, independent elementary school 
serving grades K-8 on a 21-acre campus 
near Portland, OR. Low student-teacher 
ratios and mixed-age class groupings that 
keep children with the same teacher for two 
years support each child as an individual  
and foster a sense of belonging and  
community. An Arbor education means 
active engagement in learning, concrete 
experiences, and interdisciplinary work.  
For more information on the Arbor philosophy, 
please visit www.arborschool.org.

ICCI is a private, non-profit organization  
created to train teachers in the Arbor  
educational philosophy through a two-year 
apprenticeship while they earn MAT degrees 
and licenses, and to offer guidance to  
leaders of other independent schools.  
ICCI is now accepting applications for the 
2010-2012 cohort of apprentices.
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Subscribe to Cambium now to 
make sure the next issue of the 
2009-2010 school year arrives  
in your mailbox this winter! 
Return the subscription card 
enclosed with a check for $20 
to “ICCI at Arbor School” to 
receive the four 2009-10 print 
issues. If you’d like to receive 
Cambium solely as a PDF file by 
email, the cost is $10. 

Wenwen spends $6 at the Adventure 

Store: $4 black boots + 2 $1 tangerines


